前 言
氮化硅是一百多年前就已經(jīng)發(fā)現(xiàn)的氮和硅的化合物,最早在德國合成,20世紀(jì)50年代才開始有應(yīng)用。作為工程材料,到60年代受到重視。氮化硅是人工合成的物質(zhì),自然界尚未發(fā)現(xiàn)有天然存在的氮化硅。
氮化硅陶瓷作為一種高溫結(jié)構(gòu)陶瓷,具有強(qiáng)度高、抗熱震穩(wěn)定性好、高溫蠕變小、耐磨、優(yōu)良的抗氧化性和化學(xué)穩(wěn)定性高等特點(diǎn),是優(yōu)良的工程陶瓷之一。雖然氮化硅具有良好的性能,但是它也具有陶瓷的共性——脆性。脆性這一致命弱點(diǎn),使其在應(yīng)用中的可靠性得不到保障。因此改善其韌性,提高其可靠性一直是氮化硅陶瓷研究的一個(gè)重要方向。
增韌方法
顆粒增韌——顆粒增韌就是在Si3N4材料中加入一定粒度的具有高彈性模量的顆粒,如SiC,TiC、TiN等。顆粒增韌與溫度無關(guān),可以作為高溫增韌機(jī)制。但此法一般只能取得40%一70%的增韌效果,其增韌效果不明顯。
相變增韌——ZrO2相變增韌是將ZrO2顆粒彌散在Si3N4基體中,利用四方相向單斜相的應(yīng)力誘發(fā)相變而產(chǎn)生5%左右的體積變化,可以抵消外加應(yīng)力、阻止裂紋的擴(kuò)展,達(dá)到增韌目的。
纖維增韌——纖維增韌即利用C,SiC等長纖維對Si3N4陶瓷進(jìn)行復(fù)合增韌,其機(jī)理主要是裂紋偏轉(zhuǎn)或分叉、拔出效應(yīng)和橋聯(lián)效應(yīng)。
自增韌——自增韌就是通過調(diào)整材料組分和控制制備工藝條件使一部分Si3N4晶粒原位發(fā)育成具有較高長徑比的柱狀晶粒,從而獲得類似纖維增韌的種種機(jī)制,達(dá)到增韌的效果。
層狀增韌——近年來,國內(nèi)外學(xué)者從生物界得到啟示:貝殼具有的層狀結(jié)構(gòu)可以產(chǎn)生較大的韌性,因而可以從材料的宏觀結(jié)構(gòu)角度出發(fā)來設(shè)計(jì)新型材料即層狀復(fù)合陶瓷材料。
碳纖維增韌——碳纖維由原料纖維高溫?zé)?,?jīng)過了低溫氧化、中溫碳化、高溫石墨化等工藝,具有強(qiáng)度高、模量高、密度低、耐高溫、線脹系數(shù)小、熱導(dǎo)率高等優(yōu)點(diǎn)。作為補(bǔ)強(qiáng)增韌材料,它克服了其它增韌材料的缺點(diǎn)。
碳纖維能否在氮化硅基體內(nèi)起補(bǔ)強(qiáng)作用的先決條件首先要解決好碳纖維補(bǔ)強(qiáng)的實(shí)際效果,最終取決于燒結(jié)后碳纖維與氮化硅基體結(jié)合的程度。
碳納米管增韌——理論計(jì)算表明,碳納米管具有極高的強(qiáng)度和極好的韌性。碳納米管的力學(xué)性能優(yōu)良,其強(qiáng)度約為鋼100倍,密度卻只有鋼的1/6,且在垂直于碳納米管的管軸方向具有極好的韌性,被認(rèn)為是未來的“超級纖維”。
碳納米管增韌氮化硅陶瓷復(fù)合材料的主要機(jī)制為纖維拔出機(jī)制。
氮化硅陶瓷的應(yīng)用
1、航天軍工領(lǐng)域
航空制造是制造業(yè)中高新技術(shù)最集中的領(lǐng)域,屬于先進(jìn)制造技術(shù),是新材料、新工藝和新技術(shù)的佼佼者。以飛機(jī)的渦輪發(fā)動機(jī)為例,闡述航空制造中氮化硅的應(yīng)用。
陶瓷氮化硅耐熱,可在1400℃時(shí)仍然有高的強(qiáng)度、剛度(但超過1200℃時(shí)力學(xué)強(qiáng)度會下降),但比較脆,使用連續(xù)纖維增強(qiáng)的增強(qiáng)陶瓷可應(yīng)用于渦輪部件,特別是小發(fā)動機(jī)的陶瓷葉片,渦輪外環(huán)和空氣軸承。此外,氮化硅陶瓷比密度小,密度僅為鋼軸承的41%,可有效降低飛機(jī)發(fā)動機(jī)重量,減低油耗。
2、機(jī)械工程領(lǐng)域
氮化硅陶瓷摩擦系數(shù)小,有自潤滑性,強(qiáng)度高,熱膨脹系數(shù)小,體積受溫度變化小,有效防止球/密封環(huán)卡死,可制成軸承滾珠及機(jī)械密封環(huán)。
氮化硅強(qiáng)度大,可用于軸承制造,可承受嚴(yán)酷的工作環(huán)境,工作壽命也高于一般軸承,但制作成本也比較高。
傳統(tǒng)的閥門是金屬材料,由于受金屬材料自身限制,金屬的腐蝕破壞對閥門耐磨性、可靠性、使用壽命具有相當(dāng)大的影響;一些應(yīng)用于石油工業(yè)的金屬閥門易受到化學(xué)腐蝕,失去工作能力。而氮化硅陶瓷優(yōu)良的耐腐蝕性、耐磨性、抗高溫性,能夠勝任這一領(lǐng)域。
3、超細(xì)研磨領(lǐng)域
氮化硅硬度高,硬度僅次于金剛石,立方氮化硼。因其消耗非常低,降低了研磨介質(zhì)的磨損及對研磨材料的污染,有利于獲取更高純度的超細(xì)粉體。
4、高性能機(jī)床切削刀具
在現(xiàn)代化加工過程中,提高加工效率的最有效方法是采用高速切削加工技術(shù)。氮化硅刀具特別適合于鑄鐵、高溫合金的粗精加工、高速切削和重切削,其切削耐用度比硬質(zhì)合金刀具高幾倍至十幾倍氮化硅具有非常高的耐磨性,它比硬質(zhì)合金有更好的化學(xué)穩(wěn)定性,可在高速條件下切削加工并持續(xù)較長時(shí)間,比用硬質(zhì)合金刀具平均提高效率3倍以上。
參考來源
——————————————————————————————————————————————————
趙世坤.碳納米管增韌氮化硅陶瓷的研究
鐘晶等. 碳化硅增強(qiáng)氮化硅陶瓷復(fù)合材料的制備與表征
豆鵬飛.碳材料增韌氮化硅陶瓷研究進(jìn)展
聲 明:文章內(nèi)容轉(zhuǎn)載自粉體網(wǎng),僅作分享,不代表本公司立場,如有侵權(quán),請聯(lián)系刪除,謝謝!